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Finding Loops Invariants by a Backward Method Using Inductive Assertions 

and Proving them Correct Using Mathematical Induction 

Ramon A. Mata-Toledo64 

Abstract 

The method of proving programs correct has been an endeavor of computer scientists for 

decades now. However, little progress, in comparison, with some other aspects of 

computing, has been made on this respect. The current method using Hoare’ Triple and the 

Dikjstra’ pre- and post-conditions are not easy to follow by most students. The method of 

Inductive assertions has been tried too to find loop invariants using the so-called ‘forward 

method.” The author has found that this ‘forward method” is still difficult and, for some 

program, even more difficult to follow than the Hoare’s Triple and Dijkstra’ pre and post 

conditions. In this paper the author proposes a “backward method” using Inductive 

assertion which starts at the end of the program and works its way up to the beginning of 

the program. This method has been proven successful the author’s classes where the student 

has found the method easier to use and understand.  

Keywords: inductive assertions, Hoare triple, Dijkstra conditions 

 

1. Introduction 

Because an incorrect program can lead to disastrous results, a large amount of methodology 

has been constructed trying to verify the correctness of the programs. Ideally, we would like 

to write program the ways engineers can put a building, it is not necessary to put it up first 

to verify that it would stay that way. During the last decades there here have been many 

attempts to write programs to emulate the way the engineers design a building. However, 

whereas engineers have been putting up building for centuries, computer programmers have 

been writing programs for a few decades now, so the science is not mature enough to be 

able to emulate the work centuries of the engineering experience. All these programming 

attempts generally fall under the umbrella of program verification or proof of correctness. 

Many approaches have been used such as Hoare’s Triples and Dijkstra Pre and Post conditions 

[1, 2] Additional efforts have been devoted to automating program verification so that it can 

be carried out using a computer. However, only limited progress has been made toward this 

goal. Indeed, some mathematicians and theoretical computer scientists argue that it will 

never be realistic to [automate] the proof of correctness of complex programs.” [3]  

 

2. Defining the Correctness of a program 
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A program is said to be correct if it produces the correct output for every possible input. 

The usual way of proving a program correct is subjecting it to intensive testing. Notice that 

definition of correctness by testing the program using input values seem futile even for a 

simple program like adding two integer numbers. How many pair of integers can be used 

to be sure that the program works correctly? If we represent each integer in its 2’s 

complement notation and use 32 bits internally for their representation, then we will need 

almost 264 possible combinations to test that the addition produces the right results. Even 

with a very fast computer this would take an excessive amount of time. So, obviously, a 

better way is needed to even prove that a program as the one just mentioned is correct. It is 

the purpose of this document to use Inductive Assertions [1] along with the method of 

Mathematical Induction to prove small loops correct. Although the programs used as 

examples seem elementary, it is the method used what the author is trying to explain. 

 

3. How to prove a loop correct? 

To prove a program that uses a loop to perform a task is necessary to show that: 

• First, that the program produces the correct answers (partial correctness). 

• Second, prove that the program terminates. (Loop termination) 

The author will use the method of Mathematical Induction to prove partial correctness once 

the invariant has been determined [5,6]. Next, he will use the Archimedean Principle 

applied to integer numbers for loop termination. All problems presented here only use 

variables and constant of type integer, hence the adaptation of the Archimedean Principle 

only to integer numbers instead of reals [3]. Although the programs used as examples could 

be made more complex by the addition of conditional of different types within the loop, we 

have avoided them because the author is interested in showing how an invariant can be 

found and proved. In a later paper, the author intends to show that the methods explained 

here also wells with conditional statements of different types within a loop. 

 

4. What is needed to prove a loop? 

The key to proving a loop is discovering the “loop invariant”, although most authors use 

Tony Hoare’s definition of a loop invariant [1], we will define a “loop invariant” as an 

“expression that it is true when the execution of the program reaches the loop for the very 

first time and true when the loop reaches its last statement and goes back to test the 

termination condition of the loop.” Somewhere, between the first statement and the last one, 

the loop invariant may be false but what is important is that is true at the beginning and at 

the end of the loop. Notice that proving that the loop terminates is a different task that needs 

to be performed following the proof of partial correctness. The notation of Tony Hoare’s 

assumes all what I said about the partial correctness of a loop, but it is presented more 
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formally using the notion of triples (his notation) and an inference-rule like notation which 

student seem not to understand very well.  

 

5. How do I go about finding and the proving the loop invariant? 

There are several questions and actions that we need to ask and perform to find the loop 

invariant of a loop. These questions and actions are: 

1) What does the program do? That is, what is to be produced when the program ends. 

Express this result in terms of the outputs of the program. 

2) What variable holds the output of the program? 

3) What variable controls execution of the loop? 

4) What is the final value of this variable? 

5) Find an expression that ties up the variable that holds the final result and the one 

that control the loop. This expression should be such that when you substitute the 

final variable of the variable that controls the loop produces the expression that you 

determined in step 1 

6) See what variables change within the loop and add the necessary subscripts to prove 

using mathematical induction the expression of step 1. 

7) Once the partial correctness of the loop is found, show that the loop ends using the 

Archimedean Property adapted for integer numbers. 

 

6. What is the Archimedean’s Property? 

According to Reference [4], the Archimedean property is a theorem for the real number 

system which modified for the integer numbers may be stated as follows: 

“If x > 0 and if y is an arbitrary integer number, there exists another positive integer n 

such that n*x > y” 

What this property means in geometric terms is that any line segment (y), no matter now 

long, may be covered by a finite number of line segments of a given positive length. In 

other words, a small ruler (x) used often enough (n) can measure arbitrarily large distances 

(y). Archimedes realized that this was a fundamental property of the straight line and stated 

it explicitly as one of the axioms of geometry.  

For us, when proving a loop, the application of the Archimedean property can be applied as 

follows: Let’s say that a loop is controlled by a Boolean condition involving a variable M 

such as (M <100). In this case, the current value of M is what controls the execution of the 

loop; by extension we will say that the variable M controls the loop. Let’s also assume that 

M is increased by a fixed positive amount every time the loop is executed. If this is the case, 

then, M eventually, assuming no other errors will stop the execution of the program, will 
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reach the value of M or surpass it. This last statement depends on whether M is increased 

by 1 or some other positive quantity. In this document, we will assume that the Archimedean 

property has been proved true elsewhere as shown in Reference 3. 

 

7. Two Examples 

For this first example we will take a program snippet from Reference No. 1 to find the loop 

invariant, its proof, and the loop termination. The programs are presented in pseudo-code 

using # to indicate inline comments. The statements in the snippet are basically self-

explanatory. 

Example No. 1 

Find the loop invariant to prove that the program snippet shown below computes the nth 

power of real number x for a given positive integer n. 

input n # a positive integer 

input x # a real number 

power := 1 

i := 1 

while i   n  I 

   power := power * x 

   i  := i  + 1 

endwhile 

 

Following the steps indicated in Section 5 of this document we will have that: 

1) the first question to ask is what does the program do? In this case the answer is 

trivial because the program snippet calculates xn. 

2) The output of the snippet is hold by the variable power. That is, at the end of the 

program power = xn. 

3) What variable controls the execution of the loop? Here, the variable i is used to 

determine the number of iterations of the loop. 
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4) What is the final value of i, the variable that controls the loop? Whatever the value 

of n is, the loop will terminate when i > n. Because i is incremented by 1 every time 

the loop is executed its final is i = n + 1. 

5) We now need to find an expression that involves the variable that holds the final 

result, power, and the final value of i, the variable that controls the loop, i, in such 

a way that, when we replace i by its final value, we obtain the output of the program. 

We claim that the invariant is: power = xi-1.  

Notice that if we replace in the previous expression i by its final value n+1, we 

obtain the output of the program. That is,  

𝑝𝑜𝑤𝑒𝑟 =  𝑥𝑛
 

6) The variables that change within the loop and which are of our interest are power 

and i. Therefore, let’s add the corresponding subscripts and claim that the invariant 

is: 

𝑝𝑜𝑤𝑒𝑟𝑛 = 𝑥𝑖𝑛 

We will prove this invariant using Mathematical induction on n. The invariant must be true 

the first time the execution of the program reaches the top of the loop. This is indicated in 

the snippet with (I). Therefore, for n = 0 (the basis of induction) we will have the following: 

𝑝𝑜𝑤𝑒𝑟0 = 10 = 1  (Notice that by the assignment statement power = 1 and any real raised 

to 0 is equal to the unity) 

Therefore, the invariant is true the first-time execution reaches the top of the loop. 

Now as the Hypothesis of induction, we will assume that n = k. We will interpret this as 

having gone through the loop k times already. That is, we are assuming that 𝑝𝑜𝑤𝑒𝑟𝑘 = 𝑥𝑖𝑘  

is true. (II) 

To prove that the invariant is true for n = k + 1, we will have to assume that we go around 

the loop “one more time.” 

When we do this, we find the following conditions based upon how assignment statements 

work in programming, that is, the new value of power is its “old value” multiplied by x. 

𝑝𝑜𝑤𝑒𝑟𝑘+1 = 𝑝𝑜𝑤𝑒𝑟𝑘 ∗ 𝑥. (III) 

Replacing (II) in (III) and using the exponential laws we have that 

𝑝𝑜𝑤𝑒𝑟𝑘+1 = 𝑥𝑖𝑘 ∗ 𝑥 = 𝑥𝑖𝑘+1  (IV) 
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However, within the loop we also have that  𝑖𝑘+1 =  𝑖𝑘 + 1. (V). Again, the new value of i 

is its old value increased by 1. 

Knowing this and replacing (V) into (IV) we obtain that  

        𝑝𝑜𝑤𝑒𝑟𝑘+1,= 𝑥𝑖𝑘+1 

Which proves that the invariant is true. 

Now we need to prove that the loop terminates. To do this we need to apply the 

Archimedean Property noticing that every time we go through the loop, the variable i is 

incremented by 1. Therefore, eventually, according to the Archimedean Property I will 

reach a value that surpass the value of n. Notice that it is not necessary to know what the 

initial value of n is, except that is a positive value. 

 

Example No. 2 

(from Reference No.3)  

Prove that the following program snippet computes the value of M! for (M > 1). 

input M  # read positive value M 

i := 2 

j := 1  

while i  M 

  j := j * i 

  i := i + 1 

endwhile 

print j  

The program snippet asks for the calculation of M! and from the snippet itself we can see 

the j = M! at the end of the program. Therefore, the first two questions are already answered. 

The variable that controls the loop execution is i and its final value is i = M + 1 because the 

loop executes as long as i  M. 
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Knowing which variable holds the result, j,  and the variable that controls the loop, i, we 

need to look for an expression such that when we replace i by its final value produces the 

factorial that the program calculates. 

Following similar reasoning as on Example No. 1 we can claim that the invariant is  jn = (in 

– 1)! which we need to prove using Mathematical Induction. Notice that if we replace i by 

its final expression, we get Jn = M! 

According to the conditions of the program, the first-time execution reaches the top of the 

loop we have that j = 2 and i = 2. Therefore, the basis of induction for n = 0 is as follows: 

𝑗0= ((𝑖0 − 1)! = (2-1)! = 1 

So, the basis of induction is true. 

The Hypothesis of Induction 𝑗𝑘=(𝑖𝑘-1)! assumes that we have executed the loop k times. 

Let’s call this expression (I) 

To prove that the invariant is true for n = k + 1 we need to go around the loop one more 

time. Inside the loop we have that the new values of j and i based on the definition of an 

assignment statement is 

𝑗𝑘+1= 𝑗𝑘 ∗ 𝑖𝑘   (II) 

And 𝑖𝑘+1= 𝑖𝑘+ 1    (III) 

Replacing (I) in (II) we have that 𝑗𝑘+1=(𝑖𝑘-1)!*𝑖𝑘  

According to the definition of factorial we have 𝑗𝑘+1= 𝑖𝑘! (IV) 

However, from expression (III) we have that 𝑖𝑘 − 1 = 𝑖𝑘+1  (V). Now replacing (V) into 

(IV) we have that 

𝑗𝑘+1= (𝑖𝑘+1 -1)! 

This final step shows that the invariant is correct. 

To prove loop termination, we use again the Archimedean Property. Observe that every time 

that the loop is executed, the variable i is incremented by 1. Therefore, eventually, i will 

reach the reach and surpass the value of M. 

 

8. Conclusion 
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These two small examples illustrate that the inductive assertion is easier to initially figure 

out a possible loop invariant if we work “backwards” starting from the end of the program 

and reaching the first statement of the program snippet. The fact that Mathematical 

Induction can be used to prove an invariant is a much powerful tool than any testing that 

can be done no matter how many numbers we try on. 
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